Perlin Tiling Achieved using perlin.js library
This commit is contained in:
parent
5e00218427
commit
af78a25395
|
@ -1,7 +1,8 @@
|
|||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<title>Add Image to Canvas Using image() Object</title>
|
||||
<title></title>
|
||||
<script src='perlin.js'></script>
|
||||
<link rel="stylesheet" href="style.css">
|
||||
</head>
|
||||
<body>
|
||||
|
|
310
perlin.js
Normal file
310
perlin.js
Normal file
|
@ -0,0 +1,310 @@
|
|||
/*
|
||||
* A speed-improved perlin and simplex noise algorithms for 2D.
|
||||
*
|
||||
* Based on example code by Stefan Gustavson (stegu@itn.liu.se).
|
||||
* Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
|
||||
* Better rank ordering method by Stefan Gustavson in 2012.
|
||||
* Converted to Javascript by Joseph Gentle.
|
||||
*
|
||||
* Version 2012-03-09
|
||||
*
|
||||
* This code was placed in the public domain by its original author,
|
||||
* Stefan Gustavson. You may use it as you see fit, but
|
||||
* attribution is appreciated.
|
||||
*
|
||||
*/
|
||||
|
||||
(function(global){
|
||||
var module = global.noise = {};
|
||||
|
||||
function Grad(x, y, z) {
|
||||
this.x = x; this.y = y; this.z = z;
|
||||
}
|
||||
|
||||
Grad.prototype.dot2 = function(x, y) {
|
||||
return this.x*x + this.y*y;
|
||||
};
|
||||
|
||||
Grad.prototype.dot3 = function(x, y, z) {
|
||||
return this.x*x + this.y*y + this.z*z;
|
||||
};
|
||||
|
||||
var grad3 = [new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0),
|
||||
new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1),
|
||||
new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)];
|
||||
|
||||
var p = [151,160,137,91,90,15,
|
||||
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
|
||||
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
|
||||
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
|
||||
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
|
||||
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
|
||||
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
|
||||
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
|
||||
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
|
||||
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
|
||||
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
|
||||
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
|
||||
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180];
|
||||
// To remove the need for index wrapping, double the permutation table length
|
||||
var perm = new Array(512);
|
||||
var gradP = new Array(512);
|
||||
|
||||
// This isn't a very good seeding function, but it works ok. It supports 2^16
|
||||
// different seed values. Write something better if you need more seeds.
|
||||
module.seed = function(seed) {
|
||||
if(seed > 0 && seed < 1) {
|
||||
// Scale the seed out
|
||||
seed *= 65536;
|
||||
}
|
||||
|
||||
seed = Math.floor(seed);
|
||||
if(seed < 256) {
|
||||
seed |= seed << 8;
|
||||
}
|
||||
|
||||
for(var i = 0; i < 256; i++) {
|
||||
var v;
|
||||
if (i & 1) {
|
||||
v = p[i] ^ (seed & 255);
|
||||
} else {
|
||||
v = p[i] ^ ((seed>>8) & 255);
|
||||
}
|
||||
|
||||
perm[i] = perm[i + 256] = v;
|
||||
gradP[i] = gradP[i + 256] = grad3[v % 12];
|
||||
}
|
||||
};
|
||||
|
||||
module.seed(0);
|
||||
|
||||
/*
|
||||
for(var i=0; i<256; i++) {
|
||||
perm[i] = perm[i + 256] = p[i];
|
||||
gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
|
||||
}*/
|
||||
|
||||
// Skewing and unskewing factors for 2, 3, and 4 dimensions
|
||||
var F2 = 0.5*(Math.sqrt(3)-1);
|
||||
var G2 = (3-Math.sqrt(3))/6;
|
||||
|
||||
var F3 = 1/3;
|
||||
var G3 = 1/6;
|
||||
|
||||
// 2D simplex noise
|
||||
module.simplex2 = function(xin, yin) {
|
||||
var n0, n1, n2; // Noise contributions from the three corners
|
||||
// Skew the input space to determine which simplex cell we're in
|
||||
var s = (xin+yin)*F2; // Hairy factor for 2D
|
||||
var i = Math.floor(xin+s);
|
||||
var j = Math.floor(yin+s);
|
||||
var t = (i+j)*G2;
|
||||
var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
|
||||
var y0 = yin-j+t;
|
||||
// For the 2D case, the simplex shape is an equilateral triangle.
|
||||
// Determine which simplex we are in.
|
||||
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
||||
if(x0>y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
||||
i1=1; j1=0;
|
||||
} else { // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
||||
i1=0; j1=1;
|
||||
}
|
||||
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
||||
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
||||
// c = (3-sqrt(3))/6
|
||||
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
|
||||
var y1 = y0 - j1 + G2;
|
||||
var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
|
||||
var y2 = y0 - 1 + 2 * G2;
|
||||
// Work out the hashed gradient indices of the three simplex corners
|
||||
i &= 255;
|
||||
j &= 255;
|
||||
var gi0 = gradP[i+perm[j]];
|
||||
var gi1 = gradP[i+i1+perm[j+j1]];
|
||||
var gi2 = gradP[i+1+perm[j+1]];
|
||||
// Calculate the contribution from the three corners
|
||||
var t0 = 0.5 - x0*x0-y0*y0;
|
||||
if(t0<0) {
|
||||
n0 = 0;
|
||||
} else {
|
||||
t0 *= t0;
|
||||
n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient
|
||||
}
|
||||
var t1 = 0.5 - x1*x1-y1*y1;
|
||||
if(t1<0) {
|
||||
n1 = 0;
|
||||
} else {
|
||||
t1 *= t1;
|
||||
n1 = t1 * t1 * gi1.dot2(x1, y1);
|
||||
}
|
||||
var t2 = 0.5 - x2*x2-y2*y2;
|
||||
if(t2<0) {
|
||||
n2 = 0;
|
||||
} else {
|
||||
t2 *= t2;
|
||||
n2 = t2 * t2 * gi2.dot2(x2, y2);
|
||||
}
|
||||
// Add contributions from each corner to get the final noise value.
|
||||
// The result is scaled to return values in the interval [-1,1].
|
||||
return 70 * (n0 + n1 + n2);
|
||||
};
|
||||
|
||||
// 3D simplex noise
|
||||
module.simplex3 = function(xin, yin, zin) {
|
||||
var n0, n1, n2, n3; // Noise contributions from the four corners
|
||||
|
||||
// Skew the input space to determine which simplex cell we're in
|
||||
var s = (xin+yin+zin)*F3; // Hairy factor for 2D
|
||||
var i = Math.floor(xin+s);
|
||||
var j = Math.floor(yin+s);
|
||||
var k = Math.floor(zin+s);
|
||||
|
||||
var t = (i+j+k)*G3;
|
||||
var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
|
||||
var y0 = yin-j+t;
|
||||
var z0 = zin-k+t;
|
||||
|
||||
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
||||
// Determine which simplex we are in.
|
||||
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
|
||||
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
|
||||
if(x0 >= y0) {
|
||||
if(y0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; }
|
||||
else if(x0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; }
|
||||
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; }
|
||||
} else {
|
||||
if(y0 < z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; }
|
||||
else if(x0 < z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; }
|
||||
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; }
|
||||
}
|
||||
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
||||
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
||||
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
||||
// c = 1/6.
|
||||
var x1 = x0 - i1 + G3; // Offsets for second corner
|
||||
var y1 = y0 - j1 + G3;
|
||||
var z1 = z0 - k1 + G3;
|
||||
|
||||
var x2 = x0 - i2 + 2 * G3; // Offsets for third corner
|
||||
var y2 = y0 - j2 + 2 * G3;
|
||||
var z2 = z0 - k2 + 2 * G3;
|
||||
|
||||
var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner
|
||||
var y3 = y0 - 1 + 3 * G3;
|
||||
var z3 = z0 - 1 + 3 * G3;
|
||||
|
||||
// Work out the hashed gradient indices of the four simplex corners
|
||||
i &= 255;
|
||||
j &= 255;
|
||||
k &= 255;
|
||||
var gi0 = gradP[i+ perm[j+ perm[k ]]];
|
||||
var gi1 = gradP[i+i1+perm[j+j1+perm[k+k1]]];
|
||||
var gi2 = gradP[i+i2+perm[j+j2+perm[k+k2]]];
|
||||
var gi3 = gradP[i+ 1+perm[j+ 1+perm[k+ 1]]];
|
||||
|
||||
// Calculate the contribution from the four corners
|
||||
var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
|
||||
if(t0<0) {
|
||||
n0 = 0;
|
||||
} else {
|
||||
t0 *= t0;
|
||||
n0 = t0 * t0 * gi0.dot3(x0, y0, z0); // (x,y) of grad3 used for 2D gradient
|
||||
}
|
||||
var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
|
||||
if(t1<0) {
|
||||
n1 = 0;
|
||||
} else {
|
||||
t1 *= t1;
|
||||
n1 = t1 * t1 * gi1.dot3(x1, y1, z1);
|
||||
}
|
||||
var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
|
||||
if(t2<0) {
|
||||
n2 = 0;
|
||||
} else {
|
||||
t2 *= t2;
|
||||
n2 = t2 * t2 * gi2.dot3(x2, y2, z2);
|
||||
}
|
||||
var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
|
||||
if(t3<0) {
|
||||
n3 = 0;
|
||||
} else {
|
||||
t3 *= t3;
|
||||
n3 = t3 * t3 * gi3.dot3(x3, y3, z3);
|
||||
}
|
||||
// Add contributions from each corner to get the final noise value.
|
||||
// The result is scaled to return values in the interval [-1,1].
|
||||
return 32 * (n0 + n1 + n2 + n3);
|
||||
|
||||
};
|
||||
|
||||
// ##### Perlin noise stuff
|
||||
|
||||
function fade(t) {
|
||||
return t*t*t*(t*(t*6-15)+10);
|
||||
}
|
||||
|
||||
function lerp(a, b, t) {
|
||||
return (1-t)*a + t*b;
|
||||
}
|
||||
|
||||
// 2D Perlin Noise
|
||||
module.perlin2 = function(x, y) {
|
||||
// Find unit grid cell containing point
|
||||
var X = Math.floor(x), Y = Math.floor(y);
|
||||
// Get relative xy coordinates of point within that cell
|
||||
x = x - X; y = y - Y;
|
||||
// Wrap the integer cells at 255 (smaller integer period can be introduced here)
|
||||
X = X & 255; Y = Y & 255;
|
||||
|
||||
// Calculate noise contributions from each of the four corners
|
||||
var n00 = gradP[X+perm[Y]].dot2(x, y);
|
||||
var n01 = gradP[X+perm[Y+1]].dot2(x, y-1);
|
||||
var n10 = gradP[X+1+perm[Y]].dot2(x-1, y);
|
||||
var n11 = gradP[X+1+perm[Y+1]].dot2(x-1, y-1);
|
||||
|
||||
// Compute the fade curve value for x
|
||||
var u = fade(x);
|
||||
|
||||
// Interpolate the four results
|
||||
return lerp(
|
||||
lerp(n00, n10, u),
|
||||
lerp(n01, n11, u),
|
||||
fade(y));
|
||||
};
|
||||
|
||||
// 3D Perlin Noise
|
||||
module.perlin3 = function(x, y, z) {
|
||||
// Find unit grid cell containing point
|
||||
var X = Math.floor(x), Y = Math.floor(y), Z = Math.floor(z);
|
||||
// Get relative xyz coordinates of point within that cell
|
||||
x = x - X; y = y - Y; z = z - Z;
|
||||
// Wrap the integer cells at 255 (smaller integer period can be introduced here)
|
||||
X = X & 255; Y = Y & 255; Z = Z & 255;
|
||||
|
||||
// Calculate noise contributions from each of the eight corners
|
||||
var n000 = gradP[X+ perm[Y+ perm[Z ]]].dot3(x, y, z);
|
||||
var n001 = gradP[X+ perm[Y+ perm[Z+1]]].dot3(x, y, z-1);
|
||||
var n010 = gradP[X+ perm[Y+1+perm[Z ]]].dot3(x, y-1, z);
|
||||
var n011 = gradP[X+ perm[Y+1+perm[Z+1]]].dot3(x, y-1, z-1);
|
||||
var n100 = gradP[X+1+perm[Y+ perm[Z ]]].dot3(x-1, y, z);
|
||||
var n101 = gradP[X+1+perm[Y+ perm[Z+1]]].dot3(x-1, y, z-1);
|
||||
var n110 = gradP[X+1+perm[Y+1+perm[Z ]]].dot3(x-1, y-1, z);
|
||||
var n111 = gradP[X+1+perm[Y+1+perm[Z+1]]].dot3(x-1, y-1, z-1);
|
||||
|
||||
// Compute the fade curve value for x, y, z
|
||||
var u = fade(x);
|
||||
var v = fade(y);
|
||||
var w = fade(z);
|
||||
|
||||
// Interpolate
|
||||
return lerp(
|
||||
lerp(
|
||||
lerp(n000, n100, u),
|
||||
lerp(n001, n101, u), w),
|
||||
lerp(
|
||||
lerp(n010, n110, u),
|
||||
lerp(n011, n111, u), w),
|
||||
v);
|
||||
};
|
||||
|
||||
})(this);
|
32
script.js
32
script.js
|
@ -1,8 +1,8 @@
|
|||
window.onload = function () {
|
||||
|
||||
// GET THE IMAGE.
|
||||
var img = new Image();
|
||||
img.src = 'City.png';
|
||||
var rock = new Image();
|
||||
rock.src = 'rock.png';
|
||||
var background = new Image();
|
||||
var grass = new Image();
|
||||
grass.src = 'grass.png'
|
||||
|
@ -10,32 +10,44 @@ window.onload = function () {
|
|||
sea.src = 'sea.png'
|
||||
var hills = new Image();
|
||||
hills.src = 'hills.png'
|
||||
tiles = [grass,hills,sea];
|
||||
tiles = [grass,hills,sea,rock];
|
||||
background.src = 'background.png';
|
||||
// WAIT TILL IMAGE IS LOADED.
|
||||
img.onload = function () {
|
||||
fill_canvas(img); // FILL THE CANVAS WITH THE IMAGE.
|
||||
background.onload = function () {
|
||||
fill_canvas(); // FILL THE CANVAS WITH THE IMAGE.
|
||||
}
|
||||
|
||||
function fill_canvas(img) {
|
||||
function fill_canvas() {
|
||||
// CREATE CANVAS CONTEXT.
|
||||
var canvas = document.getElementById('canvas');
|
||||
canvas.width = 384;
|
||||
canvas.height = 384;
|
||||
canvas.width = 576;
|
||||
canvas.height = 576;
|
||||
var ctx = canvas.getContext('2d');
|
||||
|
||||
|
||||
|
||||
|
||||
ctx.drawImage(background, 0, 0); // DRAW THE IMAGE TO THE CANVAS.
|
||||
ctx.drawImage(img, 0, 0);
|
||||
let x, y = 0
|
||||
noise.seed(Math.random())
|
||||
for(x = 0; x < getBlockDimensions()[0]; x++){
|
||||
for(y = 0; y < getBlockDimensions()[1]; y++){
|
||||
|
||||
ctx.drawImage(tiles[randomNumber(0,3)], x*24,y*24)
|
||||
var value = (noise.perlin2(x/3.0, y/3.0))*10;
|
||||
if (value >= -3) {
|
||||
ctx.drawImage(tiles[0], x*24,y*24)
|
||||
} else if (value < -3) {
|
||||
ctx.drawImage(tiles[2], x*24,y*24)
|
||||
}
|
||||
if (value > 1.4) {
|
||||
ctx.drawImage(tiles[1], x*24,y*24)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
for (i = 0; i < 90; i++){
|
||||
ctx.drawImage(tiles[3], randomNumber(0,24)*24,randomNumber(0,24)*24)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue